Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon: overcoming problems of high biomass and persistent cloud

نویسندگان

  • E. T. A. Mitchard
  • S. S. Saatchi
  • L. J. T. White
  • K. A. Abernethy
  • K. J. Jeffery
  • S. L. Lewis
  • M. Collins
  • M. A. Lefsky
  • M. E. Leal
  • I. H. Woodhouse
چکیده

Spatially-explicit maps of aboveground biomass are essential for calculating the losses and gains in forest carbon at a regional to national level. The production of such maps across wide areas will become increasingly necessary as international efforts to protect primary forests, such as the REDD+ (Reducing Emissions from Deforestation and forest Degradation) mechanism, come into effect, alongside their use for management and research more generally. However, mapping biomass over high-biomass tropical forest is challenging as (1) direct regressions with optical and radar data saturate, (2) much of the tropics is persistently cloudcovered, reducing the availability of optical data, (3) many regions include steep topography, making the use of radar data complex, (5) while LiDAR data does not suffer from saturation, expensive aircraft-derived data are necessary for complete coverage. We present a solution to the problems, using a combination of terrain-corrected L-band radar data (ALOS PALSAR), spaceborne LiDAR data (ICESat GLAS) and groundbased data. We map Gabon’s Lopé National Park (5000 km2) because it includes a range of vegetation types from savanna to closed-canopy tropical forest, is topographically complex, has no recent contiguous cloud-free high-resolution optical data, and the dense forest is above the saturation point for radar. Our 100 m resolution biomass map is derived from fusing spaceborne LiDAR (7142 ICESat GLAS footprints), 96 ground-based plots (average size 0.8 ha) and an unsupervised classification of terrain-corrected ALOS PALSAR radar data, from which we derive the aboveground biomass stocks of the park to be 78 Tg C (173 Mg C ha−1). This value is consistent with our field data average of 181 Mg C ha−1, from the field plots measured in 2009 covering a total of 78 ha, and which are independent as they were not used for the GLASbiomass estimation. We estimate an uncertainty of±25 % on our carbon stock value for the park. This error term includes uncertainties resulting from the use of a generic tropical allometric equation, the use of GLAS data to estimate Lorey’s height, and the necessity of separating the landscape into distinct classes. As there is currently no spaceborne LiDAR satellite in operation (GLAS data is available for 2003–2009 only), this methodology is not suitable for change-detection. This research underlines the need for new satellite LiDAR data to provide the potential for biomass-change estimates, although this need will not be met before 2015. Published by Copernicus Publications on behalf of the European Geosciences Union. 180 E. T. A. Mitchard et al.: Mapping aboveground biomass with radar and LiDAR

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forest biomass mapping from lidar and radar synergies

1 FOREST BIOMASS MAPPING FROM LIDAR AND RADAR SYNERGIES 2 Guoqing Sun, K. Jon Ranson, Z. Guo, Z. Zhang, P. Montesano and D. Kimes 3 4 Dept. of Geography, University of Maryland, College Park, MD USA, [email protected] 5 Biospheric Sciences Branch, NASA’s Goddard Space Flight Center, Greenbelt, MD USA 6 State Key Laboratory of Remote Sensing, Institute of Remote Sensing Applications, Chinese...

متن کامل

ICESat/GLAS Data as a Measurement Tool for Peatland Topography and Peat Swamp Forest Biomass in Kalimantan, Indonesia

Indonesian peatlands are one of the largest near-surface pools of terrestrial organic carbon. Persistent logging, drainage and recurrent fires lead to huge emission of carbon each year. Since tropical peatlands are highly inaccessible, few measurements on peat depth and forest biomass are available. We assessed the applicability of quality filtered ICESat/GLAS (a spaceborne LiDAR system) data t...

متن کامل

Monitoring Forests: Parameters Estimation and Vegetation Classification with Multisource Remote Sensing Data

2 Acknowledgments 3 Table of contents 4 Chapter 1 Introduction 6 1.1 Thesis objectives, motivations and innovation 7 1.2 Materials and methods 15 1.2.1 The Sierra Nevada, U.S.A (study site 1) 16 1.2.2 The Alps, Bozen, Italy (study site 2) 16 1.2.3 Gola Rainforest National Park, Sierra Leone (study site 3) 17 1.3 Thesis outline 18 1.4 References 19 Chapter 2 – Remote sensing of forested landscap...

متن کامل

Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure

[1] Abrupt forest disturbances generating gaps >0.001 km impact roughly 0.4–0.7 million km a . Fire, windstorms, logging, and shifting cultivation are dominant disturbances; minor contributors are land conversion, flooding, landslides, and avalanches. All can have substantial impacts on canopy biomass and structure. Quantifying disturbance location, extent, severity, and the fate of disturbed b...

متن کامل

Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas

Mapping forest AGB (Above Ground Biomass) is of crucial importance to estimate the carbon emissions associated with tropical deforestation. This study proposes a method to overcome the saturation at high AGB values of existing AGB map (Vieilledent’s AGB map) by using a map of correction factors generated from GLAS (Geoscience Laser Altimeter System) spaceborne LiDAR data. The Vieilledent’s AGB ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012